Лобанов Н.Ф. Новомосковский институт РХТУ им. Д.И. Менделеева 301665, Тульская область, г. Новомосковск, ул. Дружбы, 8 k_ohp@dialog.nirhtu.ru

Газотермическое напыление активированных оксидных порошков

Целью экспериментального исследования являлось рассмотрение возможности повышения качества плазменного покрытия и экономичности процесса напыления за счет воздействия электрического поля на трибозаряженный (после питателя) оксидный порошок. Внешнее электрическое поле от независимого источника «накладывалось» на дистанцию напыления между срезом анода и деталью. Эксперименты проводились на базе серийной установки плазменного напыления УПУ-ЗД с использованием порошка типа корунд с диаметром частиц 60-80 мкм ,наносимого на прогретые до 90-120 ⁰ цилиндрические образцы с D= 0,04 м, изготовленные из стали Ст.45. Поверхность всех образцов перед напылением обрабатывалась чугунной дробью, а параметры работы модернизированного плазматрона-распылителя были стабилизированы.

Напыляемый порошок подавался радиально на срез анодного сопла плазмотрона с электрической мощностью 15-16 кВт. Расход плазмообразующего газа (смесь аргона и азота) был равен 2,5-2,8 нм³/час, массовый расход порошка – 0,03-0,04 кг/мин. При дистанции напыления – около 0,1 м при толщине напылённого слоя от 0,25 до 0,4 мм. Коэффициент использования напыляемого материала (КИП) рассчитывался как:

$$k = \left(1 - \frac{\Delta M_{ITH}}{dM_0 \cdot \tau}\right)$$

где dM_0 – секундный расход питателя порошка, $\Delta M_{\Gamma TH}$ – прирост массы образца с напылением, τ – время напыления.

Зарядка порошка осуществлялась при трении частиц о внутреннюю поверхность при подаче через фторопластовую трубку диаметром 3мм и длиной около 2 м. Наличие заряда на порошке определялось по току электризации изолированного участка зарядного канала. Было установлено, что порошок приобретает положительный заряд так же, как и в условиях коронного разряда при напряженности внешнего поля 40 кВ/см. В опытах напряженность электрического поля между заземлённым анодом плазмотрона и отрицательно заряженной деталью ступенчато варьировалась в диапазоне от 0 до 1 кВ/м.

Из таблицы видно, что процесс нанесения порошкового материала в постоянном электрическом поле (с подачей дополнительного отрицательного потенциала на деталь) позволяет получить повышение адгезии покрытия на 20-25% и увеличение коэффициента использования порошка (КИП) в 1,3-1,7 раза. Положительный эффект по адгезии вероятно достигается за счет разрушения окисной пленки на стальной основе образца из-за некоторого ускорения заряженных частиц, скорость которых в зоне торможения увеличивается. Это повышает долю частиц порошка прочно сцепляющихся с обрабатываемой поверхностью. Следует отметить, что трибоэлектрическая зарядка напыляемого порошка более экономична и безопасна, чем в коронном разряде. Но уровень накопленного положительного заряда при течении непроводящего порошка при увеличении длины полимерной трубки выше 2 м неизбежно стабилизировался. Недостаточный уровень зарядки порошка в аспекте прироста скорости твёрдых частиц можно компенсировать увеличением «ускоряющего» электрического поля. Однако при значениях напряженности более 1,0 кВ/см процесс становился неустойчивым, что приводило к появлению следов эрозии на детали.

Таблица -Результаты плазменного напыления поверхностно-заряженного порошка в электрическом поле

№ п/п	Напряженность поля Е, [кВ/см]	Коэффициент использования порошка, %	Прочность сцепления [кг/см²]	Примечания
1.	0	41	92	
2.	0	41	93	
3.	0	42	93	
1.	0,08	44	96	С зарядкой исходного порошка
2.	0,15	51	104	
3.	0,75	68	112	
4.	1,0	72	119	
5.	1,2	75	121	Процесс не стабилен

Как следует из представленных экспериментов (таблица) положительный эффект по приросту степени использования порошкового материала (КИП) носит более управляемый и устойчивый характер.