Докторов А.Н., Базжин А.С.

Муромский институт (филиал) федерального государственного образовательного учреждения высшего образования «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» 602264, г. Муром, Владимирская обл., ул. Орловская, 23 E-mail: romashovmurom@mail.ru, doctorov_a_n@mail.ru

Программа частотного планирования формирователей сигналов с применением образов основной частоты цифровых вычислительных синтезаторов

Формирователи сигналов, основанные на цифровых вычислительных синтезаторах (ЦВС) широко используются во многих радиотехнических системах, измерительных приборах, а также системах передачи данных, метрологических комплексах и медицинском оборудовании. Совершенствование таких формирователей сигналов требует решения задачи повышения выходной частоты ЦВС без потери когерентности колебаний. В [1] рассмотрен метод использования образов основной частоты ЦВС для повышения частоты выходного сигнала.

Однако использование образов затруднено сложностью частотного планирования данных формирователей сигналов. В работах [2, 3] был предложен алгоритм частотного планирования, учитывающий условие фильтрации образов [4].

На основе данного алгоритма создана программа частотного планирования, написанная на языке программирования С++. На рис. 1 показано окно программы.

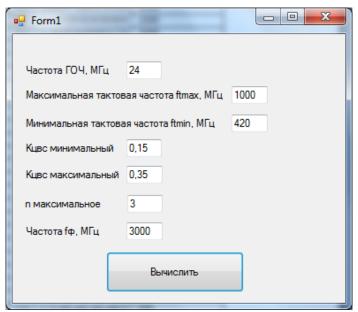


Рис. 1 Интерфейс главного окна программы частотного планирования.

В зависимости от типа ЦВС задаются исходные данные частотного планирования. Показанные на рисунке значения соответствуют применению ЦВС AD9910 при использовании генератора опорной частоты Γ OЧ с частотой 24 М Γ ц, и встроенного умножителя тактовой частоты. Кроме того, устанавливаются значения минимального и максимального $K_{\text{ЦВС}}$, определяющего соотношение основной частоты и тактовой частоты ЦВС. Выбирается максимальное число образов основной частоты, и выходная частота формирователя [4].

Результат расчета частотного плана экспортируется в новый файл приложения MS Word. Для работы программе требуется приложение MS NET Framework 4.5. Пример расчета, выдаваемый программой, приведен в таблице 1.

Таблица 1 - Результат работы программы

n2	n1	n	fcvs	Ft	Kcvs	fobr
2	19	3	132	456	0,289473684210526	1500
2	22	-3	84	528	0,159090909090909	1500
2	23	-3	156	552	0,282608695652174	1500
3	19	2	88	456	0,192982456140351	1000
3	13	3	64	312	0,205128205128205	1000
3	15	-3	80	360	0,2222222222222	1000
3	18	2	136	432	0,314814814814815	1000
3	23	-2	104	552	0,188405797101449	1000
3	24	-2	152	576	0,263888888888889	1000
4	18	-2	114	432	0,263888888888889	750
4	14	2	78	336	0,232142857142857	750
4	11	-3	42	264	0,159090909090909	750
4	17	-2	66	408	0,161764705882353	750
4	24	1	174	576	0,3020833333333333	750

......

	125	4	0	24	96	0,25	0
Ī	250	2	0	12	48	0,25	0
Ī	500	1	0	6	24	0,25	0

В таблице в виде строк представлены рассчитанные варианты комбинаций параметров частотного планирования. Первый и второй столбцы таблицы содержат значения коэффициентов умножения выходных и тактовых умножителей частоты. Следующие столбцы содержат рассчитанные значения номера используемого образа, основной частоты, коэффициента передачи $K_{\text{ЦВС}}$, частоты образа. Комбинации коэффициентов отсортированы по возрастанию n_2 . Это необходимо для быстрого поиска оптимальных вариантов частотного плана в начале таблицы.

Разработанная программа позволяет упростить частотное планирование данных формирователей. Кроме того, автоматизация частотного планирования ускоряет разработку и проектирование формирователей сигналов с использованием образов основной частоты цифровых вычислительных синтезаторов.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта N 16-37-00299 мол a.

Литература

- 1. Ромашов В.В., Ромашова Л.В., Храмов К.К., Докторов А.Н. Модель спектральной плотности мощности фазовых шумов цифровых вычислительных синтезаторов на образах основной частоты // Радиопромышленность. 2012, №2. С. 38-48.
- 2. Докторов, А.Н., Якименко К.А. Алгоритм частотного планирования формирователя сигналов на основе цифровых вычислительных синтезаторов в режиме образов основной частоты / А.Н. Докторов, К.А. Якименко // Научный потенциал молодежи будущее России [Электронный ресурс]: V Всероссийские научные Зворыкинские чтения: сб. тез. докл. V Всероссийской молодежной научной конференции. Муром, 22 апр. 2013 г.— Муром: Изд.-полиграфический центр МИ ВлГУ, 2013.— 964 с.: ил.— 1 электрон. опт. диск (CD-ROM) С. 320-321.
- 3. Докторов, А.Н. Анализ алгоритма частотного планирования формирователей сигналов с использованием образов основной частоты цифровых вычислительных синтезаторов / А.Н. Докторов // Методы и устройства передачи и обработки информации, 2017, № 19. С. 16-22.
- 4. Ромашов, В.В. Частотное планирование формирователей сигналов радиосистем на основе цифровых вычислительных синтезаторов / В.В. Ромашов, К.К. Храмов, А.Н. Докторов // Радиотехнические и телекоммуникационные системы. -2012. №4 С.10-16.