Принципы реализации космических скаттерометров на основе активных фазированных антенных решёток

С.Л. Внотченко, А.И. Коваленко, В. В. Риман, С.Н. Смирнов, И.Н. Чечина

ОАО «Научно-исследовательский институт точных приборов», ул. Декабристов 51, 127490 Москва, Россия, Тел: (495)402-92-77, Факс(495)404-91-91, E-mail:Alexander.Kovalenko@niitp.ru

В докладе описан технический облик и основные характеристики многофункциональных космических скаттерометров K_u -диапазона, реализуемых в виде радиолокаторов с активными фазированными антенными решётками (AФAP). Рассмотрены различные варианты построения бортовой радиолокационной аппаратуры: с призматической AФAP, обеспечивающей круговой обзор земной (водной) поверхности и с парой AФAP (переднего и заднего обзора). Приведены сравнительные характеристики скаттерометров.

This report presents technical pattern and main characteristics of the multifunctional spaceborne K_u band scatterometers, which realized as radar with active phase array. Various design versions onboard radar hardware are consideration: radar with prismatick active phased array and radar with pair active phased array (forward looking and back looking). Comparison characteristics of scatterometers are presented.

Введение

Современные скаттерометрические радиолокационные системы, размещённые на космических аппаратах, предназначены для осуществления оперативного глобального мониторинга состояния поверхности океанов. Обработка полученных измерительных данных о распределении величины удельной эффективной поверхности рассеяния (УЭПР) позволяет, в рамках определённых модельных предположений, определять параметры приводного ветра и морского волнения в широкой полосе обзора. Типичным представителем такого класса аппаратуры является CBЧ-скаттерометр SeaWind панорамный измеритель вектора скорости ветра в открытом океане, размещённый на КА QUIKSKAT [1, 2]. Бортовая радиолокационная аппаратура данного скаттерометра построена на основе параболической вращающейся антенны, осуществляющей обзор земной поверхности остронаправленным лучом, что налагает известные ограничения на функциональные свойства скаттерометра (реализуется единственный режим с постоянными параметрами съёмки). Одной из возможных альтернатив такому техническому облику скаттерометра представляется применение технологии активных фазированных антенных решёток (АФАР) в сочетании с современными цифровыми методами формирования и обработки зондирующего сигнала.

Геометрия радиолокационного наблюдения

Принцип действия скаттерометров со сканированием луча основан на использовании зависимости УЭПР морской поверхности от геометрических параметров радиолокационного наблюдения (угол падения луча, азимутальный угол по отношению к направлению ветра) и характеристик зондирующего сигнала (длина волны, поляризация сигнала). По результатам сканирования поверхности, проведённом с определенным углом падения и с известной поляризацией, с помощью соответствующего алгоритма обработки данных (см. [2]) можно восстановить панораму скорости и направления приводного ветра; при этом обработка проводится на борту с непосредственной передачей на Землю сформированных измерительных данных. Геометрия обзора морской поверхности для скаттерометра типа SeaWind приведена на рис. 1.

Рис. 1. Геометрия обзора морской поверхности системы SeaWind на КА QUIKSCAT

Пространственная разрешающая способность полученного поля скоростей приводного ветра определяется поперечным размером следа диаграммы направленности антенны на поверхности, шириной спектра зондирующего сигнала и необходимой кратностью усреднения результатов оценки УЭПР. Характерная величина размера элемента разрешения в скаттерометре SeaWind варьируется в интервале 15 – 22 км.

При конкретизации технического облика бортовой радиолокационной аппаратуры режим целесообразно рассматривать базовый функционирования системы. эквивалентный режиму радиолокационной съёмки SeaWind с одним сканирующим лучом антенны одной поляризации. Это позволяет корректно провести сравнение параметров систем разных типов; в случае практической же реализации проектов этот подход даёт возможность использования ранее разработанных методик и алгоритмов обработки результатов радиолокационных измерений, а также существующих технических средств калибровки радиолокационных измерений параметров поверхности океана.

В настоящей работе рассмотрим два типа скаттерометров:

- скаттерометр с призматической AФАР;
- скаттерометр с антенной системой в виде пары плоских АФАР (переднего и заднего обзора).

Скаттерометр с призматической АФАР

Апертура антенны представляет собой боковую поверхность правильной многоугольной прямой призмы с максимальным размером основания 2 м и длиной бокового ребра 1,1 м (рис. 2). Антенное полотно реализуется в виде волноводнощелевой решётки, в которой элементарным излучателем является волноводно-щелевая антенна бегущей волны.

Основные функциональные отличия от скаттерометра SeaWind состоят в следующем:

- сканирование луча осуществляется электронным способом;
- угол падения электромагнитной волны может регулироваться (за счёт изменения несущей частоты);
- возможна реализация двух лучей ортогональных поляризаций с одинаковыми углами падения электромагнитной волны;
- реализуется программное управление параметрами режима радиолокационной съёмки.

Структурная схема аппаратно-программных средств бортовой аппаратуры скаттерометра показана на рис. 3.

Рис. 2. Конфигурация призматической антенной системы: а) аксонометрический вид; б) вид сверху

Рис. 3. Структура аппаратнопрограммных средств скаттерометра с призматической АФАР

На рис. 3 приняты следующие сокращения:

- ЗИ зондирующий импульс;
- КУ команды управления;
- OC-i отражённый сигнал, принимаемый i-м активным антенным модулем;
- РИ радиоимпульс.

Базовым конструктивным элементом призматической АФАР является активный антенный модуль (AAM), излучающая поверхность которого представляет собой грань призмы размером $618 \times 1100 \text{ мм}^2$. При шаге расположения элементарных излучателей по азимуту (вдоль малого размера AAM), равному 19,3 мм, обеспечивается сектор углов электронного сканирования $\pm 18^{\circ}$ при уровне дифракционного максимума ДНА минус 8,16 дБ. Таким образом, в состав ААМ входит 32 элементарных приёмо-передающих канала, конструктивно объединенных в 4-канальные групповые приёмо-передающие модули (ГППМ).

Скаттерометр с антенной системой в виде пары плоских АФАР

Антенная система представляет собой пару плоских АФАР, осуществляющих обзор передней и задней полусферы. Обзор в пределах каждой полусферы осуществляется путём электронного сканирования луча антенны в плоскости, поперечной траектории движения КА. Геометрические размеры каждой из антенн составляют $0,7\times0,7$ м² (вариант 1) или $0,7\times0,45$ м² (вариант 2). Структура бортовой аппаратуры аналогична показанной на рис. 3, но с другим количеством активных антенных модулей. Геометрия визирования (для передней полусферы) иллюстрируется рис. 4.

Рис. 4. Геометрия визирования в передней полусфере

Данный вариант скаттерометра имеет следующие особенности:

1.Для обеспечения приемлемой полосы обзора сканирование лучом осуществляется в передней (задней) полусфере в достаточно широком угловом секторе ± 36 град. Это приводит к существенным ограничениям на величину шага элементарных излучателей антенной решётки в поперечном направлении, что делает невозможным реализацию двухполяризационной решётки в рамках одной антенной апертуры.

2. При строго секторном сканировании происходит заметное изменение угла падения электромагнитной волны по полосе обзора. Этот эффект может быть парирован перестройкой несущей частоты зондирующего импульса в зависимости от текущего азимутального положения луча.

Основные параметры скаттерометров приведены в таблице.

Анализ данных показывает, что отечественные космические скаттерометры нового поколения могут быть реализованы на основе АФАР К_и-диапазона. При этом рассмотренные варианты исполнения бортовой аппаратуры характеризуются приёмлемыми массо-энергетическими показателями, и, в то же время, обладают большими возможностями по адаптации параметров радиолокационной съёмки к решаемым научно-прикладным задачам.

Для повышения информативности системы радиолокационного наблюдения океана аппаратура скаттерометров может быть дополнена *каналом вертикального зондирования*, функционально представляющим собой радиолокатор со сканирующей антенной, имеющей диаграмму направленности "ножевой" формы (см., например,[3]).

N₂	Параметр	SeaWinds	Система с	Система с двумя	Система с двумя
п/п			призм.	плоскими АФАР	плоскими АФАР
			АФАР	(Вариант 1)	(Вариант 2)
1.	Высота орбиты	800 км	650 км	650	650
2.	Полоса обзора	1800 км	1460 км	1212 км	1212 км
3.	Угол падения	47°; 55°	52.4°-56°	40.4°-56°	40.4°-56°
4.	Размер первично-	700 м	818 м	916 м	713 м
	го элемента разре-				
	шения по гориз.				
	дальности				
5.	Размер результир.	15 км;	32.7 км	36.6 км	28.5 км
	элемента разреше	19 км			
	ния по горизонт.				
	дальности				
6.	Импульсная	110 Bт	25 Вт	10/20 Вт□2-2	10/20 Вт□2-2
	мощность		(1 луч)	решетки	решетки
7.	Средняя		6.16 Вт	3.6 Вт□2	3.6 Вт□2
	мощность				
8.	Размер апертуры	Диаметр			
	антенны	зеркала 1 м	1.1□0.618 м ²	0.7□0,7 м ²	0.45□0,7 м ²
2	0	θ_Γ	0.2 - Γ	10 5 -F	θ ζ -Γ
2	Отношение	8 дь	8.3 дь	10.5 дь	8.6 дь
0	Сигнал/шум Мараа ГА	120	120	50	11
9.	Macca DA	120 КГ	130 КГ	50 КГ	<u>44 КГ</u>
10.	Потребление БА	-	230 Вт	350 Вт	590 Вт

Таблица. Параметры скаттерометров

Заключение

Космические скаттерометры, построенные на основе АФАР и осуществляющие *адаптивное* радиолокационное наблюдение поверхности океана, могут быть реализованы в рамках создания космических комплексов океанографического и гидрологического назначения.

На наш взгляд, при дальнейшей практической реализации рассмотренных проектов, необходимо подробно рассмотреть следующие **системно-теоретические вопросы**:

- обоснование требований, предъявляемых к информации, формируемой космической системой наблюдения океана;
- формирование принципов применения адаптивных многофункциональных скаттерометров в космических системах дистанционного зондирования океана;
- разработка и обоснование процедур калибровки радиолокационных измерений (в том числе, с использованием наземных и подспутниковых средств).

Литература

1. M. W. Spencer, Chialin Wu, D. G. Long. Tradeoffs in the Design of a Spaceborne Scanning Pencil Beam Scatterometer: Application to SeaWinds. IEEE Transactions On Geoscience And Remote Sensing, Vol. 35, No. 1, January 1997, 115-126

2. M. W. Spencer, Chialin Wu, D. G. Long. Improved Resolution Backscatter Measurements with the SeaWinds Pencil-Beam Scatterometer. IEEE Transactions On Geoscience And Remote Sensing, Vol. 38, No. 1, January 2000, 89-104

3. В. Караев, М.Каневский, Г.Баландина, Е.Мешков, П.Челленор, М.Срокосз, К.Гомменджинджер, Новые средства дистанционной диагностики океана: радиолокатор СВЧ-диапазона с ножевой диаграммой направленности антенны, Исследование Земли и Космоса, 2004, N 2, 41-52