Маркин В.И.

Научный руководитель: Жиганова Е.А. к.т.н., доцент

Муромский институт (филиал) федерального государственного образовательного учреждения высшего образования «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» 602264, г. Муром, Владимирская обл., ул. Орловская, 23 Е-mail: radio@mivlgu.ru

Сравнительный анализ полиэкспоненциальных аппроксимаций нелинейных характеристик

Полиэкспоненциальная аппроксимации в наибольшей степени соответствует виду законов, отражающих сущность физических процессов, происходящих в полупроводниковых приборах и микросхемах, что позволяет использовать табулированные модифицированные функции Бесселя. Полиэкспоненциальная аппроксимация представляется в виде

$$i(u) = \sum_{m=1}^{M} a_m e^{b_m u},$$
 (1)

где $a_{\scriptscriptstyle T}$, $b_{\scriptscriptstyle m}$ – коэффициенты аппроксимации, подлежащие определению при решении системы алгебраических уравнений степени M.

При высокой степени нелинейности характеристики в больших пределах изменения напряжения приходится брать большое количество коэффициентов $a_{\scriptscriptstyle T}$ и $b_{\scriptscriptstyle m}$. Если полиэкспоненциальная аппроксимация имеет вид

$$i(u) = \sum_{m=0}^{M} a_m e^{(-1)^m mu}, \qquad (2)$$

то ее называют полиэкспоненциальной аппроксимацией с чередующимися знаками показателей степени (ПЭА ЧЗ).

При применении (2) возникает трудность вычисления коэффициентов аппроксимации $a_{\rm T}$, заключающаяся в составлении и решении системы (M+1) уравнений. Но эта трудность значительно упрощается при использовании прикладной программы Mathcad и представлением системы в матричной форме. Неизвестные коэффициенты $a_{\rm T}$ в (2) определяются из условия минимума среднеквадратической ошибки СКО

$$\sigma^{2} = \frac{1}{K^{2}} \sum_{j=1}^{K} \left(i_{j} - \sum_{m=0}^{M} a_{m} e^{(-1)^{m} m u_{j}} \right)^{2}, \tag{3}$$

где K – число точек HX, i_j , U_j – значения тока и напряжения в j – ой точке.

Если полиэкспоненциальная аппроксимация имеет вид

$$i(u) = \sum_{m=0}^{M} a_m e^{mu} ,$$

то ее называют полиэкспоненциальной аппроксимацией с положительными знаками показателей степени (ПЭА ПЗ).

ПЭА ПЗ отличается от ПЭА ЧЗ наличием только положительных показателей степеней экспонент. Используя матричный метод для поиска неизвестных коэффициентов в ПЭА ЧЗ необходимо рассчитать ЗК элементов матрицы, а для ПЭА ПЗ - (2K+1). Поэтому вычисление коэффициентов для ПЭА ПЗ менее трудоемкое, чем для ПЭА ЧЗ. Для сравнительного анализа аппроксимаций вида (1) и (2) был взят биполярный транзистор КТ 920Б, проходная характеристика которого имеет большую крутизну. Значения СКО приведены в таблице 1, а графическая зависимость от числа точек аппроксимации – на рис. 1.

Таблица 1

таолица т		
Число точек	ПЭА ЧЗ	ПЭА ПЗ
7	2,732·10 ⁻³	1,674·10 -5
8	7,423·10 ⁻⁴	1,227·10 -5
9	4,329·10 ⁻⁴	8,56·10 ⁻⁶
10	1,57·10 ⁻⁵	4,93·10 ⁻⁶

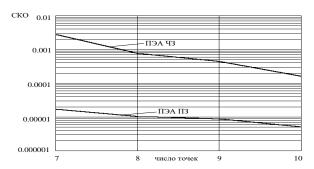


Рис. 1