Киров Д.В.

Научный руководитель: доцент, к.т.н. Жиганова Е.А.

Муромский институт (филиал) федерального государственного образовательного учреждения высшего образования «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» 602264, г. Муром, Владимирская обл., ул. Орловская, 23 Е-mail: radio@mivlgu.ru

Компенсационные свойства усилителя мощности при фазном сложении сигналов

В работе рассмотрели схему сложения мощности с использованием мостовых устройств, которая часто применяется в современных радиопередающих устройствах.

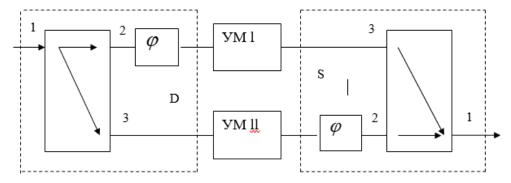


Рисунок 1 – Мостовая схема сложения мощности радиосигналов

Простейшая реализация схемы (рис. 1) содержит два усилителя мощности УМ 1, УМ 11 с коэффициентами усиления K_1 и K_2 , мостовые делитель D и сумматор S мощности. Последние можно рассматривать как синфазные мостовые устройства с коэффициентами передачи $\beta(\omega)$ в плече 1-2, $\gamma(\omega)$ —в плече 1—3 и сдвигом фаз между ними φ .

Рассмотрели случай, когда в тракте УМ образуются гармоники усиливаемого сигнала ($U_0 \sin \omega_{10} t$) и составляющие интермодуляции, обусловленные воздействием помехи (Un sinw₀₁t) на выходные цепи усилителя. Учитывая сдвиги фаз сигналов и их комбинационных составляющих в плечах сложения, для амплитуды составляющей с частотой $k\omega_{10} \pm l\omega_{01}$ в нагрузке получаем.

На рис. 2 графически представлено распределение индексов комбинационных составляющих, по данному случаю (крестиком обозначено прохождение, жирной точкой ослабление на 6 д $\overline{\text{B}}$, кружком — подавление), для различных фазовых сдвигов φ в плечах схемы.

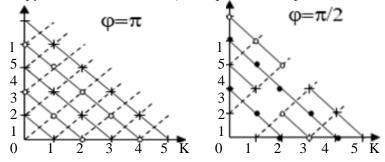


Рисунок 2 - Распределение индексов комбинационных составляющих

Как видно, сложение со сдвигом фаз $\phi=\pi/2$ позволяет подавить ряд продуктов нелинейности УМ, в том числе самую интенсивную составляющую с частотой $\omega_{21}=2\omega_{10}-\omega_{01}$, по которой нормируется уровень интермодуляционных излучений ПРД. Использование при

сложении мостовых устройств с различными фазовыми сдвигами, например с $\varphi=\pi$ и $\pi/2$ (мостовые двухтактные усилители, мощность которых суммируется квадратурно), дает возможность устранить все виды нежелательных колебаний до пятого порядка.