Ганьшина О.В.

Муромский институт (филиал) федерального государственного образовательного учреждения высшего образования «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» 602264, г. Муром, Владимирская обл., ул. Орловская, 23 Е-таіl: itpu@mivlgu.ru

Частотные факторы и их влияние на пъезоэлектрические датчики давления

Данную тему по праву можно считать актуальной, так как настоящее время пьезоэлектрические датчики все чаще находят свое применение в системах для получения измеряемых величин (силы, скорости и др). Примером таких систем могут послужить системы измерения циклического давления в цилиндрических двигателях внутреннего сгорания (ДВС) и импульсных давлений в баллистических установках.

В процессе проектирования пьезоэлектрических датчиков давления, которые предназначены для эксплуатации в трудных условиях, важно учесть факторы воздействия на этот датчик. Это может быть переменное давление среды или какие-либо вибрации. После чего датчики необходимо согласовать с собственными частотными параметрами для того, чтобы уменьшить частотную погрешность.

Примером исследуемого датчика будет являться охлаждаемый пьезоэлектрический датчик давления, установленный в цилиндре дизельного двигателя внутреннего сгорания, и, соответственно, область установки датчика. Снимались показания амплитуд и частот виброускорений по трём перпендикулярным направлениям. Изобразим на схеме.

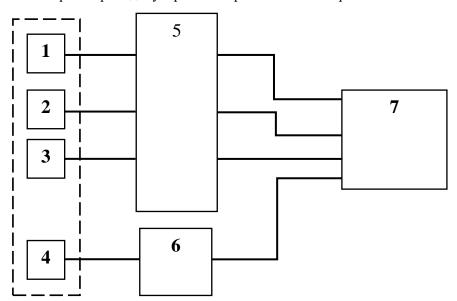


Рисунок 1 – Блок-схема измерений

Здесь под цифрой 1, 2 и 3 указан акселерометр. Датчик давления находится в блоке 4. Блок 5 – это многоканальный усилитель. Блок 6 – зарядный усилитель. Блок 7 – осциллограф.

Сняв показания с датчиков -акселерометров, и датчика давления были определены частоты для максимальных амплитуд сигналов и составляющих виброускорений. Результаты, полученные после обработки, были представлены в таблице 1.

Таблица 1 – Результаты виброускорений.

таолица т тезультаты внороускорении.				
No॒	U_{Mi} — макс. амплитуда напряжения,	f_i – частота,	H_{i} $_{-}$ амплитуда	
канала	В	кГц	виброускорений, ед д	
1	0,063	11	4,3	

2	0,544	4,9	38
3	1,187	6,5	77
4	0,048	4,1	-

В верхней точке амплитуда шума в выходном импульсе датчика давления составляет $U_m = 48,9 \text{ мB}$. В процентном соотношении от номинального сигнала датчика это составляет:

$$\gamma = \frac{0.048}{5.23} * 100\% = 0.92\% \tag{1}$$

Где, за номинальный сигнал был заложен сигнал с датчика . Наиболее характерная частота шума была: $f_{\mathbf{4}} = 4,1$ к $\Gamma \mathbf{u}$.

В соответствии с расчетами было определено, что амплитуды виброускорений находятся в границе до 80g при работе двигателя в максимальном режиме. В каждом направлении амплитуда неоднообразна и пиковая в вертикальном направлении, совпадающем с направлением движения поршня в цилиндре двигателя. Про произведенным вычислениям следует, что датчик разумно расположить на объекте так, чтобы его ось была перпендикулярна оси движения поршня.

Литература

- 1. Электрические измерения неэлектрических величин / Под ред. П.В. Новицкого. М., Энергия, 1975
- 2. Малов, В. В. Пьезорезонансные датчики / В.В. Малов. М.: Энергоатомиздат, 1989. 272 с.
- 3. Фрайден, Дж. Современные датчики. Справочник / Дж. Фрайден. М.: Техносфера, 2006. 592 с.
- 4. Шарапов, В. Пьезоэлектрические датчики / В. Шарапов, М. Мусиенко, Е. Шарапова. М.: Техносфера, 2006. 632 с