Волченков А.В.

Муромский институт (филиал) федерального государственного образовательного учреждения высшего образования «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» 602264, г. Муром, Владимирская обл., ул. Орловская, 23 Е-mail: apmitp@yandex.ru

Этапы оптимизации показателей технического уровня технологических машин

Оценка технического уровня (ТУ) технологической машины основывается на представлении конечных результатов исключительно в количественной форме. Это позволяет сформировать целевую функцию и алгоритм обеспечения ТУ машины на каждой стадии ее жизненного цикла, пригодные для оказания наиболее эффективных регулирующих воздействий.

Пусть данный тип технологической машины в соответствии со своим назначением характеризуется следующими параметрами: Π_1 и Π_2 . Повышение ТУ технологической машины характеризуется увеличением значений этих параметров Π_1 и Π_2 .

Для проведения оценки сформирована группа прототипов из 13 образцов (A_1 - A_{13}) и группа оцениваемых машин из 4 образцов (M_1 – M_4). Допустим, что значения технических параметров у прототипов A_1 , A_6 , и A_5 , A_{10} совпадают. В качестве прототипов-образцов выделяются лучшие на основе их сопоставления по значениям оцениваемых технических параметров. Оценка соответствия представленных образцов ТУ выделенных прототипов состоит из следующих этапов:

- 1. Убеждаемся в том, что значения технических параметров оцениваемых образцов удовлетворяют соответствующим стандартам.
- 2. Каждая оцениваемая машина сопоставляется с каждым прототипом-образцом. Оцениваемый образец M_4 превосходит прототип A_1 по всем техническим параметрам, а каждый из прототипов-образцов A_2 , A_3 , A_4 , A_5 , $A_8 A_{13}$ образец M_4 превосходит по одному параметру и уступает по другому. Поэтому оцениваемый образец «не уступает» уровню прототипов-образцов. Однако на данном этапе существует неопределенность отнесения образца M_4 к градациям «превосходит» или «соответствует».
- 3. Образцы M_1 , M_2 , M_3 , уступают прототипу-образцу A_3 , по обоим техническим параметрам, но каждый из них превосходит хотя бы один другой образец по одному параметру и уступает ему же по другому параметру. Поэтому каждый из этих образцов «не превосходит» уровень прототипа-образца. Однако существует неопределенность отнесения образцов M_1 , M_2 , и M_3 к градациям «уступает» или «соответствует».
- 4. Число прототипов-образцов превосходит число используемых технических параметров, поэтому имеющаяся неопределенность в оценках образцов M_1 , M_2 , M_3 , M_4 , устраняется на данном этапе оценки ТУ. В пространстве технических параметров по всем точкам (наборам значений оцениваемых технических параметров), которые соответствуют образцам A_1 , A_2 , A_3 , A_4 , A_5 , A_6 , A_{10} , строится линеаризционная кривая. Число точек, соответствующих прототипамобразцам, допускает возможность использования линейных и степенных линеаризционных кривых. Наименьшую погрешность обеспечивает степенная линеаризция. Ее уравнение имеет следующий вид:

 $\Pi_1=b\Pi_2^{-a}$.