Суржик Д.И., Кузичкин О.Р., Курилов И.А., Харчук С.М.

Муромский институт (филиал) федерального государственного образовательного учреждения высшего образования «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» 602264, г. Муром, Владимирская обл., ул. Орловская, 23 Е-mail: kh@mivlgu.ru

Переходные характеристики формирователя сигналов с ЦВС в выходном тракте

Формирователи сигналов позволяют получить сетку высокостабильных частот с высокой скоростью перестройки и малым шагом перестройки [1]. Применение в формирователях устройств автоматической компенсации фазовых помех позволяет повысить чистоту спектра и качественные показатели их выходных сигналов.

Представленный в докладе формирователь реализует метод гибридного синтеза частот на основе системы фазовой автоподстройки частоты (ФАПЧ) и цифрового вычислительного синтезатора частот (ЦВС). Особенностью исследуемой схемы является введение сигнала вычислительного синтезатора при помощи преобразования частоты в выходной тракт системы ФАПЧ. Для компенсации фазовых помех производится инверсное управление фазой обрабатываемого сигнала.

При скачкообразном дестабилизирующем воздействи на опорный генератор и фазовый детектор системы Φ АПЧ выражения для фазы выходного сигнала исследуемого формирователя принимают вид

$$\varphi_{\varepsilon_{0}}(p) = K_{\varepsilon_{0}} \left(\frac{K_{3}K_{\eta}K_{c2}}{p} + \frac{K_{1}\left(\frac{M(p)K_{c1}}{\tau pK_{2}} - NMy(p)\right)}{p + \frac{M(p)}{\tau}} \right), \tag{1}$$

$$\varphi_{\varepsilon_{\mathcal{I}}}(p) = \frac{K_{\varepsilon_{\mathcal{I}}}}{K_{\mathcal{I}}} \cdot \frac{1}{p + \frac{M(p)}{\tau}} \left(\frac{M(p)K_{c1}}{\tau pK_2} - NMy(p) \right), \tag{2}$$

где: р-оператор Лапласа; K_1 и K_2 , K_3 -коэффициенты передачи первого умножителя частоты и первого и второго делителей частоты соответственно; $K_{\text{П}}$ -коэффициент передачи ЦВС; $K_{\text{С1}}$, $K_{\text{С2}}$ -коэффициенты передачи смесителя; $K_{\epsilon 0}$ и $K_{\epsilon 1}$ -коэффициент передачи помех опорного генератора и фазового детектора; M(p) и My(p) — передаточные функции фильтров системы ФАПЧ и тракта компенсации воздействия; N - коэффициент регулирования тракта компенсации воздействия, τ - постоянная времени системы ФАПЧ.

По полученным выражениям построены графики переходных характеристик формирователя для широкополосных трактов, трактов с фильтрами нижних частот первого и второго порядков. Проводится исследование характера переходных процессов и времени установления фазы выходного сигнала в зависимости от типов примененных инерционностей и значения коэффициента регулирования тракта компенсации воздействия.

Анализ переходных характеристик позволяет оптимизировать параметры составляющих формирователь звеньев для обеспечения эффективного подавления динамических фазовых помех.

Литература

1. Суржик Д. И., Курилов И. А., Васильев Г. С. Компенсация искажений ЦВС в гибридных синтезаторах частот // Радиотехнические и телекоммуникационные системы. - 2015. – № 4(20). - С. 13-19.