Жиганов С.Н., Михеев К.В., Ракитин А.В., Горячев М.С.

Муромский институт (филиал) федерального государственного образовательного учреждения высшего образования «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» 602264, г. Муром, Владимирская обл., ул. Орловская, 23 E-mail: s_zh_72@mail.ru

Применение многочленов Чебышева второго рода при аппроксимации функциональных зависимостей

Одной из основных задач, решаемых в системах обработки информации и реализации полученных алгоритмов на различных вычислительных устройствах является замена одной функции f(x) другой максимально близко похожей на нее, которую проще использовать в расчетах, либо реализовать в вычислителях, т.е. необходимо сделать замену вида

$$f(x) \approx \varphi(x)$$
. (1)

При воспроизведении функциональных зависимостей широкое применение нашел полиномиальный метод аппроксимации, который используется во многих научных и прикладных технических задачах: от приближения стандартных математических функций в современных специализированных микропроцессорах до реализации градуировочных характеристик при воспроизведении рабочих эталонов, калибровке датчиков и измерительных систем. Повсеместное распространение полиномиального метода обусловлено его простотой, наглядной геометрической интерпретацией, а главное — низкими вычислительными затратами при расчете значений функции f(x) с помощью полинома

$$\varphi(x) = a_0 + a_1 x + \dots + a_n x^n = \sum_{k=0}^n a_k x^k.$$
 (2)

В работе [1] показано, что для ортогональных многочленов $f_k(x)$ на отрезке [a; b] с весовой функцией $\omega(x)$ при $m\neq n$ должно выполнятся следующее условие

$$\int_{a}^{b} f_{m}(x)f_{n}(x) \omega(x)dx = 0.$$
(3)

Многочлены Чебышева второго рода получаются при весовой функции $\omega(x) = \sqrt{1-x^2}$. Для этих многочленов при $n \ge 2$ справедлива следующая рекуррентная формула

$$U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x), \tag{4}$$

при этом первые две функции равны $U_0(x) = 1$ и $U_1(x) = 2x$.

Аппроксимирующая функции $\psi(x)$ получается из соотношения

$$\psi(x) = c_0 + c_1 U_1(x) + c_2 U_2(x) + \cdots$$
 (5)

коэффициенты которого рассчитываются по формуле

$$c_{n} = \frac{2}{\pi} \int_{-1}^{1} f(x)U_{n}(x)\sqrt{1 - x^{2}} dx, n = 0,1,2,...$$
 (6)

Графики первых десяти многочленов Чебышева второго рода приведены на рис. 1.

В работе рассмотрено разложение функции корня $f(x) = \sqrt{x}$ на интервале значений [0, 1] с использованием многочленов Чебышева второго рода до 9 порядка. В таблице 1 приведены значения максимальных отклонений от эталонной функции и значения полученной площади ошибки для разных полиномов. На рис.2 приведены графики изменения площади ошибок при использовании полиномов 7 (сплошная кривая) и 9 (штриховая кривая) степени в зависимости от изменения λ для функции корня.

Таблица 1

Порядок полинома	0	1	2	3	4	5	6	7	8	9
δ_+	0,321	0,031	0,03	0,01	0,011	0,0065	0,0058	0,0048	0,0042	0,0038
δ_	0,679	0,291	0,194	0,107	0,119	0,1	0,086	0,076	0,068	0,0085
Som	0,196	0,034	0,013	6,3·10	3,6·10 ⁻	2,2·10 ⁻	1,6·10 ⁻	1,1·10 ⁻	8,1·10 ⁻	6,2.10-4

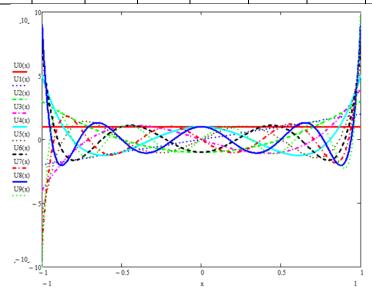


Рис.1. - Полиномы Чебышева второго рода

На рис. 2 приведен график ошибок аппроксимации при использовании многочленов Чебышева 9 степени первого рода (точечной кривой) и второго рода (сплошной кривой). Из сравнения кривых видно, точность аппроксимации функции при использовании полиномов второго рода выше, чем при использовании полиномов первого рода, однако и в этом случае максимальные отклонения от нуля так же принимают разные значения на интервале аппроксимации.

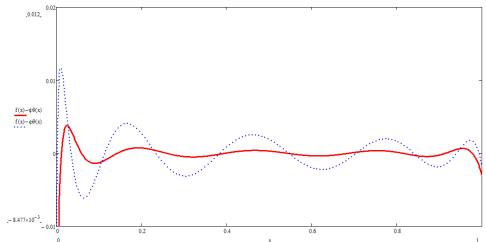


Рис. 2. - Графики ошибок аппроксимации функции $f(x) = \sqrt{x}$ при использовании полиномов Чебышева 1-го рода (точечная кривая) и 2-го рода (сплошная кривая) девятого порядка

Точность аппроксимации функции при использовании полиномов 2-го рода выше чем при использовании полиномов Чебышева 1-го рода и так же выше, чем у полиномов, полученных с использованием разложения функции в ряд Тейлора при $x_0=0.5$.

Работа выполнена при поддержке гранта РФФИ № 19-07-01215 и конкурса инновационных проектов Владимирской области «УМНИК-2018».